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Anomalous Long Time Tails Due to Trapping 
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A new mechanism is described for producing slow decays in the velocity 
correlation function of diffusive systems with directed trapping. If the directions 
for entering and leaving a trap are correlated and if the distribution of trapping 
times has a long tail then the velocity correlation function will have a 
corresponding long time tail. This new long time tail decays like t-~2+ ~I, where 

is an exponent characterizing the tail of the distribution of trapping times. A 
simple random walk model which illustrates this mechanism is analyzed. 

KEY WORDS: Random walks; trapping; disordered materials; long time 
tails; mode coupling. 

1. I N T R O D U C T I O N  

The purpose of this paper is to describe a new mechanism for producing 
slow decays in the velocity correlation function of a particle moving in a 
disordered diffusive medium. This mechanism depends upon the presence 
of directed traps. A trap is a region of space which is difficult to leave; it is 
"directed" if the directions for entering the trap are correlated with the 
directions for leaving it. If the characteristic time for a given directed trap is 
r then the velocity of the particle will be correlated over a time z as it 
enters and leaves the trap. Power law decays of the velocity correlation 
function (VCF) will arise if there is a distribution of trapping times with a 
power law tail. 

Power law decays or long time tails in the VCF are a general feature 
of transport in disordered diffusive systems. (1 3) They occur in models 
governed by classical dynamics such as the Lorentz gas, (2'5 s) and in the 
motion of a quantum mechanical particle in a disordered potential, o) They 
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also occur in purely stochastic models (so long as the "velocity" is 
appropriately defined). (z4'1~ A variety of methods including exact 
solutions, mode coupling theory, kinetic theory, renormalization group 
methods, and effective medium theory have been used to derive the long 
time tails in these models. Excepting the quantum mechanical case, O) all of 
these theories yield the result that the VCF decays like t (1+d/2) for long 
times. The most general of these theories is the mode coupling theory (1'2) 
which shows that the t - ( l+a/2)  decay of the VCF results from long 
wavelength variations in the local diffusion coefficient of the system. The 
mode coupling theory identifies the amplitude of the long time tail with the 
mean squared fluctuations in the diffusion coefficient from one realization 
to another. Harrison and Zwanzig (4) have shown that the mode coupling 
expression for the long time tail is exact for a wide class of hopping models. 
On the other hand, we shall see that the mode coupling theory fails to 
predict long time tails due to directed trapping. 

Random walk models with variety of random symmetric traps have 
been studied in the past, ~1 ~5) A general argument given in Ref. 11 shows 
that symmetric trapping cannot lead to long time tails in the VCF. On the 
other hand, symmetric trapping does contribute to slow decays of Burnett 
and higher-order velocity correlation functions. (x2 ~4) Although it was not 
explicitly stated there, the analysis of the Burnett correlation function given 
in Ref. 14, hereafter referred to as MNNE, leads to results which disagree 
with the mode coupling theory. 

In this paper we study a simple hopping model with directed trapping. 
This model is similar to the one studied in MNNE and we use the methods 
developed there to analyze it. In Section 2 the model is defined and 
analyzed. In Section 3 the results are contrasted to those of the mode 
coupling theory and general conclusions are drawn. 

2. R A N D O M  W A L K  M O D E L  

Consider a random walk on a d-dimensional hypercubic lattice with 
lattice spacing I. Associated with each lattice site there are two states, a 
conduction state and a trapping state. From the conduction state at site n 
the walker may hop to any of its near-neighbor conduction states at a rate 
v or it may enter the associated trapping state at a rate 1/~.. From the 
trapping state the particle may only return to the corresponding conduc- 
tion state, again at the rate 1/%. Directionality is introduced into the 
model by having the trapping state displaced an amount lx. from the con- 
duction state. This random walk model is conveniently described by the 
master equation: 
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dP.,+(t)/dt= -v  ~ OnmPm,+(t  ) + (1/r,)[P._(t)-P.,+(t)] ( la )  
nin 

dP.,_ (t)/dt = - ( 1 / , 0 )  [P , , _  (t) - P.,  + (t)] ( lb)  

where P.,+(t) and P._(t) refer, respectively, to the occupation 
probabilities of the conduction state and the trapping state associated with 
lattice site n at time t. The matrix VO.m describes nearest-neighbor hopping 
among the conduction states with 0.m given by 

0 . m = Z  (6~l,m - 6  . . . . .  ) (2) 
11 

where the sum is over the 2d lattice directions. The number of sites in the 
lattice is M and at the end of the calculation the limit, M--+ co is taken. 

Disorder is introduced into the model by allowing ~. and x .  to be 
independent, identically distributed random variables. Interesting effects 
occur for trapping time distributions with power law tails of the form 

Prob{r,>t}~At ~ as t --+ co (3) 

and these are the distributions considered explicitly here. Note that these 
distributions are well-defined for c~ > 0 but have no mean if c~ ~< 1. The trap 
displacements are taken to have zero mean and fluctuation a, 

( x . )  = 0  (4a) 

( X  n "]Kni ) = aZfn,rn  (4b) 

The model described above is very similar to the system studied in 
MNNE.  The crucial difference is that, in the present model, entering a trap 
is associated with a displacement whereas in MNNE,  this is not the case. 
In this work we do not include a bias field or break detailed balance 
between the traps and the conduction states as was done in M N N E  (in the 
notation of M N N E  we have e = 0 and 2 = 1). In the present work we have 
taken random displacements; however, the results would be qualitatively 
the same if the traps were displaced in an ordered way. 

The formal solution to the master equation (1) was obtained in 
M N N E  and, for a given realization of the disorder, takes the form 

( ~. +(z)'~ (G(n, +In,, +)G(n, +lm,-))(P,. ,+(O)'~ 
(5) -@.~-(z))=~\c(.,-Ira, +)a( . , - I~,  ))\Fm_(O)) 

where the script character indicates a Laplace transform of the 
corresponding function of time and z is the Laplace transform variable. The 
components of the Green's function are given by 
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G ( + I + ) =  [zK+v0] - ~ - G  (6a) 

G(+ I - ) = G W E z l + W ]  -1 (6b) 

G ( - I + ) =  Ezl ~ - W ]  - 1  WG (6c) 

G ( - I - ) = [ z l + W ] - ' + [ z I + W ] - I W G W [ z l + W ]  - '  (6d) 

where we have used matrix notation to suppress the site indices. The 
matrix 0 is defined in Eq. (2) and the W and K are diagonal matrices 
defined by 

Wnm = Onm/'Cn ( 7 a )  

K.m = 6.m(ZZ. + 2)/(ZZ. + 1 ) (7b) 

The fundamental quantity of interest to us is the mean squared dis- 
placement, #2(t) of a walker chosen from the stationary distribution, 
psn, + = p s  = 1/2M. From/~2(t) we can obtain the VCF, the generalized 
diffusion coefficient and, given the AC Einstein relation, the frequency- 
dependent conductivity. In terms of the components of the Green's function 
defined above, the Laplace transform of the mean squared displacement 
can be expressed in the form 

m,n a =  q-,-- 
b = + ,  

(12[m - n + Xmfia_ - ]KnOb,_ ]2  G(m, a l n, b) pSn,b) 

(8) 

where the angular brackets indicate an average over realizations of the ran- 
dom variables, r and x. By expanding the quantity in the square brackets 
and averaging over the variable x we may separate the expression for the 
mean squared displacement into two terms 

where 

and 

]J2(Z) ~- ]J(20)(Z) AV ],/(1)(Z) 

= E Z 
m,n a =  + , - -  

b = + , - -  

(9a) 

] ' /(1)(Z) = 2 Z 
nl,ll o=  +, - -  

b = + , - -  

(12[m -- n] 2 G(m, a ln, b) PS.,b) (9b) 

0"212 [6a, +6b, --26a, ab_am,.] 

• ( G ( m , a [ n , b ) p s . , b )  (9c) 
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Physically, co) P2 (z) accounts for intersite displacements while p(21)(z) 
accounts for displacements between the conduction and trapping states. 
p(f)(z) was calculated for d =  1 in MNNE and that calculation is easily 
generalized to d >  1 to yield, in the time domain, 

#~~ = 2d D t  (10a) 

with 

D = I2v/2 (10b) 

Note that the only effect of the traps in Eqs. (10) is to reduce the diffusion 
coefficient by a factor of 2 over its value in a system without traps. This is 
because the walker spends half of its time immobile in a trap. The dis- 
tribution of trap times does not enter the expression for the diffusion coef- 
ficient. 

The quantity p(2~)(z) can be simplified using Eqs. (6), an exact expan- 
sion for G, 

G = ( z K ) - ~ - v ( z K ) - ~ O ( z K ) - l + v 2 ( z K ) - ~ O G O ( z K )  ~ (i1) 

and the fact that, for fixed n, 

Z 0 . m = ~  0m.=0 (12) 
I n  I l l  

The result is that 

where 

u~'~(z) = / : ~ : [  ( l / z )  - ~ ( z )  - _~(z) ] (13a) 

and 

~ ( z )  = (Vo/(Z'C o + 1)) 

~(z) = ( ( K -  1) 2 G(z))oo 

(13b) 

(13c) 

The three terms in the square brackets of Eq. (13a) have simple physical 
interpretations in the time domain. The first term is the sum of the 
probabilities, each 1/2, that the walker is trapped initially or finally. P ( t )  is 
the probability that the walker stays in a single trap during the interval 0 
to t. Q( t )  is the probability that the walker is trapped initially and finally in 
the same trap and that during the time interval from 0 to t has visited a 
conduction site at least once. 
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The asymptotic behavior of P(t) is easily evaluated using a Tauberian 
theorem and the probability distribution of the trap times, Eq. (3), 

P( t )~AF(1  +~) t -~ (14) 

The asymptotic expansion of ~(z) can be developed by the methods of Sec- 
tion4 of MNNE. The basic idea is to expand G in powers of 6K= 
K -  ( K )  and to show that this is equivalent to a small z expansion. Since 
( K . . )  ~ 2 -  (const) z ~ the leading small z behavior of ~(z) is obtained by 
setting K = 21 in Eqs. (6a) and (13c). Thus 2(z)~ [(2z + v0) l]00 which is 
one half the Laplace transform of the probability of being at the origin of 
an ordinary random walk with diffusion coefficient D. To leading order 
then 

Q( t ) ~ (12/4~Dt )a/2/2 (15) 

The velocity correlation function, ~b(t), is formally defined as one half 
the second derivative of the mean squared displacement. The leading long 
time tail of the VCF depends upon c~ and d and takes the form 

q~(t)~_d(d+2)12+da2(~D) a/z(4t) (2+a/2) for d /2<e  (16a) 

o r  

q~(t)~ -cdZaZAF(2+.)  t-/2+~)/2 for d / 2 > .  (16b) 

3. D ISCUSSION 

We have studied a hopping model with trapping and determined the 
long time tail of the velocity correlation function. Let us contrast our result 
to the predictions which the mode coupling theory makes for our model. 
The mode-coupling theory predicts that the leading long time tail in a dis- 
ordered diffusive system decays like t -(1+d/2) with an amplitude propor- 
tional to the fluctuations in the diffusion coefficient from one realization to 
another. In the present model, the diffusion coefficient is independent of the 
trap parameters xm and rm [see Eq. (10)]. Thus there are no fluctuations 
in the diffusion coefficient and the mode coupling theory predicts that the 
long time tail is less singular than t -(~+d/2). Hence for the present model 
with c~ < ( - 1 + d/2), the mode coupling theory fails. 

Roughly speaking, within the mode coupling theory long relaxation 
times, r, are associated with long wavelength diffusive modes, i.e., ~ ~ 1/qZD 
and q small. These modes are coupled to VCF via local fluctuations in the 
diffusion coefficient. On the other hand, in the present model there are also 
localized slow modes associated with traps with long relaxation times. The 
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trap displacements couple these modes to the VCF. Indeed, the t - (2+~)  

long time tail in the present model is independent of the diffusion process 
between conduction states. 

The crucial feature of the model which leads to the anomalous long 
time tail is the presence of directed traps having a broad distribution of 
relaxation times. Other diffusive systems with this feature should also have 
a contribution to the VCF which decays like t (2 + ~). One example of this 
is the overlapping Lorentz gas where configurations of scatterers which 
almost completely enclose a region of space form directed traps. In Ref. 16 
it is shown that the tail in the trapping time distribution has exponent c~ = 
1 / ( d - 1 ) .  Thus for d >  3 we expect the long time tail in the VCF to be 
dominated by trapping rather than ring events and to decay like 
t -E2+l/(d-1)l These ideas should also apply to the frequency-dependent 
conductivity in materials characterized by the "Swiss-cheese" model dis- 
cussed recently by Halperin, Feng, and Sen. O7) Here overlapping spherical 
holes are randomly placed in a uniform conducting medium and traps are 
formed by configurations of holes which almost completely enclose a 
region of space. 

A C K N O W L E D G M E N T S  

I am grateful to Alan Harrison for stimulating discussions concerning 
the relation between this work and Ref. 4. I would like to thank Henk van 
Beijeren for useful suggestions. This work was supported in part by NSF 
grant No. DMR-8317442. 

REFERENCES 

1. M. H. Ernst, J. Machta, J. R, Dorfman and H. van Beijeren, J. Star. Phys. 34:477 (1984). 
2. J. Machta, M. H. Ernst, H. van Beijeren, and J. R. Dorfman, J. Stat. Phys. 35:413 (1984). 
3. P. B. Visscher, Phys. Hey. B 29:5462 (1984); Phys. Hey. B 29:5472 (1984). 
4. A. K. Harrison and R. Zwanzig, J. Star. Phys. 42:935 (1986). 
5. E. H. Hauge, Lecture Notes in Physics, No. 31, G. Kirczenow and J. Marro, eds. 

(Springer-Verlag, Berlin, 1974). 
6. M. H. Ernst and A. Weijland, Phys. Lett. 34A:39 (1971). 
7. C. Bruin, Physica 72:261 (1974). 
8. B. J. Alder and W. E. Alley, Physica 121A:523 (1983). 
9. T. R. Kirkpatrick and J. R. Dorfman, Phys. Hey. A 28:1022 (1983); W. Hoogeveen and J. 

A. Tjon, Physica 125A:163 (1984). 
10. S. Alexander, J. Bernasconi, W. R, Schneider, and R. Orbach, Hey. Mod. Phys. 53:175 

(1981); J. Machta, Phys. Hey. B 24:5260 (1981); R. Zwanzig, J. Stat. Phys. 28:127 (1982); 
H. van Beijeren, Hey. Mod. Phys. 54:195 (1982); J. W. Haus, K. W. Kehr, and K. 
Kitahara, Phys. Hey. B 25:4918 (1982); Th. M. Nieuwenhuizen and M. H. Ernst, Phys. 
Hey. B 31:3518 (1985). 



948 Machta 

11. J. W. Haus, K. W. Kehr, and J. W. Lyklema, Phys. Rev. B 25:2905 (1982). 
12. J. Machta, J. Stat. Phys. 30:305 (1983). 
13. P. J. H. Denteneer and M. H. Ernst, J. Phys. C 16:L961 (1983); Phys. Rev. B 29:1755 

(1984). 
14. J. Machta, M. Nelkin, Th. M. Nieuwenhuizen, and M. H. Ernst, Phys. Rev. B 31:7636 

(1985). 
15. G. H. Weiss, Separation Science and Technology 17:1609 (1983). 
16. J. Machta and S. M. Moore, Diffusion and long time tails in the overlapping Lorentz gas, 

Phys. Rev. A 32:3164 (1985). 
17. B. I. Halperin, S, Feng, and P. N. Sen, Phys. Rev. Lett. 54:2391 (1985). 


